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Simulations of avascular cancer growth are performed using experimental values of the relevant parameters.
This permits a realistic assessment of the influence of these parameters on cancer growth dynamics. In general,
an early exponential growth phase is followed by a linear regime �as observed in recent experiments�, while the
thickness of the viable cell layer remains approximately constant. Contrary to some predictions, a transition to
latency is not observed.
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The complexity of tumor dynamics is such that it would
be impractical to try to formulate a mathematical model that
embodies all the relevant processes. However, sophisticated
mathematical models have been put forward to examine the
influence of various mechanisms at different growth stages
�1–6�. The competition for nutrients is a crucial growth-
controlling factor. On this basis, a model was proposed a few
years ago to describe the possible morphologies of avascular
tumor growth �7�. Starting from a consistent set of rules for
the cellular interactions, a set of coupled nonlinear iteration
equations was formulated and solved by direct numerical
simulation. This model has led not only to various realistic
morphologies, but also to the prediction of a phase transition
from growth to latency �8�, to a description of the dynamics
of tumor cords �9�, and to an analysis of how anatomical
constraints condition tumor growth �10�. More recently, it
has been used to describe some aspects of the tumor-immune
system interaction �11� and the shedding of cells by multi-
cellular tumor spheroids �MTSs� �12�. Of course, the detailed
predictions of the model depend on the values chosen for the
parameters. In Ref. �7�, the parameters were given arbitrary
�though reasonable� values. Nowadays, since much more is
known about the experimental values of the parameters, we
can make our predictions far more precise. In this Brief Re-
port we use the model of Scalerandi and co-workers to pre-
dict some key properties of a growing avascular tumor. For
instance, there have been controversies about the law con-
trolling the growth of the total tumor mass, the more tradi-
tional view stating that it is well described by the Gompertz
law �2,5� and new research indicating that power laws give
better descriptions �13,14�. Our simulations help to clarify
this problem by precisely predicting what can be expected on
the basis of the model hypotheses. We also address the prob-
lem of the existence of a phase transition from tumor growth
to latency, finding that this transition does not occur when
realistic parameter values are used.

In the model of Ref. �7� the tissue is represented by a
network whose node points are each associated with a vol-
ume element that contains many cells and nutrient mol-
ecules. Healthy, cancerous, and dead cells coexist at each

node point, their concentrations being, respectively, h�i��,
c�i��, and d�i��. The total cell concentration is considered to be
uniform and normalized.

The nutrient that diffuses through the tissue is called free
nutrient. For simplicity, we consider a single critical
nutrient—i.e., glucose—whose concentration and diffusion

coefficient will be denoted by p�i�, t� and ��, respectively.
The rules governing the behavior of the cancer cells are the
following.

�i� Feeding. Cancer cells absorb free nutrients at the rate

��i�� = �as�1 − e−�p�i��� , �1�

where � is an affinity parameter, which we will take equal to
unity. The absorption rate is proportional to the local free

nutrient concentration p�i�� at low concentrations, but it satu-
rates �to �as� at high concentrations. Absorbed nutrients are
called bound nutrients.

�ii� Consumption. The bound nutrient, whose concentra-

tion is q�i��, is consumed by cancer cells at the rate

��i�� = �as�1 − e−q�i��/c�i��� , �2�

where the denominator c�i�� has been included in the expo-
nent because each cell can consume only its own bound nu-
trient.

�iii� Death. When the average amount of bound nutrient

per cell, q�i�� /c�i��, falls below a given threshold QD, a frac-

tion rDc�i�� of cancer cells dies.
�iv� Mitosis. A high concentration of bound nutrient may

trigger cell replication. This is supposed to occur if q�i�� /c�i��
exceeds a mitosis threshold QM �QM �QD�; in this time, a
fraction f i,j of healthy cells is transformed into cancer cells.
The fraction f i,j is given by

f i,j = h�i�� + �rMc�i�� − h�i����„h�i�� − rMc�i��… , �3�

where � is Heaviside’s step function and rM is a constant.
�v� Migration. A cell that senses a low nutrient level in its

neighborhood tends to migrate. We assume that it moves

with a migration rate � if p�i�� /c�i��� PD, where PD is the
migration threshold. Since healthy cells are less mobile and
aggressive than cancer cells, we assume that they are elimi-
nated when cancer cells arrive, in such a way that the total
cell concentration is preserved.

Implementation of these rules generates a system of
coupled nonlinear iteration equations which is detailed in
Ref. �7�. As an example, we write the iteration equation for*menchon@famaf.unc.edu.ar
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the evolution of the free nutrient concentration:

p�i�,t + �� = p�i�,t� + ���
i��

��

�2 �p�i��,t� − p�i�,t�� − �0p�i�,t�h�i�,t�

− ��i�,t�c�i�,t�� , �4�

where � is the iteration interval and �0 the healthy cell nu-
trient absorption coefficient. The first term inside the curly
brackets corresponds to nutrient diffusion to and from the

nearest neighbors of i�, and the second and third terms corre-
spond, respectively, to healthy and cancer cells absorption.

We represent the tissue of interest by a two-dimensional

square grid, with lattice constant � and node points i�

= ��i ;�j�, where i and j are integers. The nutrients are sup-
plied by a single capillary vessel situated at the lower edge of
the lattice. The nutrient concentration in the blood vessel is
constant, p(��i ;0� , t)= P0. Periodic boundary conditions are
used for the left and right boundaries. Initially we consider a
healthy tissue with stationary nutrient distribution. In the lo-
cal interaction simulation approach of Scalerandi et al. �7�,
the cellular and nutrient concentrations are modified by the
local conditions at each step. In this work we use an im-
proved implementation to minimize numerical errors.

Our two-dimensional square grid represents a slab of tis-
sue of size 1 cm	1 cm. If we consider a lattice with
300	300 node points, then ��33 
m. As the average di-
ameter of mammalian cells is approximately 10 
m �4�, each
node contains about 10 cells. We assume that the glucose
concentration in the vessel is the normal glucose concentra-
tion in human sera—i.e., 5.5 mM �15�. The diffusion
coefficient of glucose in MTSs varies from 8.3	10−4

to 2.0	10−3 cm2 /h �16�. For this reason, we take
��=0.001 cm2 /h.

Figure 5 of Ref. �17� shows a linear relation between the
rate of glucose consumption and the average cell volume. If
we take a linear approximation for Eq. �1� and work with this
data set, we obtain �as�200 /h. The metabolic rate of
glucose consumption was measured as a function of
tumor grade in Ref. �18�. Using the results of this experi-
ment, we may assume that the cancer cells consume
80 
mol / �100 g tissue min� and, proceeding in the same
way as for �as, we propose �as�5 /h. The migration
coefficient values have a wide range of variation, from
2.5	10−8 to 5.4	10−5 cm2 /h, for cancer cells �19,20�. In
general, we choose �=8.3	10−8 cm2 /h, which is near the
low end of the range, because we also want to know if the
tumor arrives to latency.

On the basis of many runs the temporal discretization was
chosen to be �=0.001 h. Cell growth and division are regu-
lated by the cell cycle. The cell-cycle duration is approxi-
mately 12 h in exponentially growing monolayer cultures
�5�. Therefore, we inspect the threshold QM every 12 000
steps. We also inspect the thresholds PD and QD every
12 000 steps. Table I summarizes the reference values of the
parameters used in the simulations. The constants PD, rM and

rD are taken to be equal to 2.61 mM, 1, and 0.25, respec-
tively.

Initially the free nutrient distribution is stationary and the
tissue is formed only by healthy cells. At t=0 tumor growth
starts from a cancer seed located at the center of the lattice. A
large number of simulations have allowed us to identify to
which parameters cancer growth is most sensitive. We have
explored the effects of variations in these parameters, and
here we report on the results obtained for the cases listed in
Table II.

In general, the experimental data, such as tumor radius
and viable rim thickness, are obtained from MTSs, which are
three-dimensional �3D� culture cell systems with an approxi-
mately spherical shape and a concentrically layered structure.
This structure consists of an inner necrotic core, an interme-
diate layer of viable but quiescent cells, and an outer shell of
proliferating cells. In order to analyze our data we define the
mean tumor radius as

R = 	r
 = N−1�
i=1

N

ri, �5�

where N is the total number of nodes in the tumor edge and

ri is the distance from node point i� to the center of mass of
the tumor. In the same way we define the mean necrotic
radius Rn. In this case N and ri are, respectively, replaced by
the number of nodes in the necrotic core-viable tumor zone

TABLE I. Numerical values of computational parameters.

Symbol Unit Value References

� 
m 33

� h 0.001

P0 Mm 5.5 �15�
�� cm2 /h 0.001 �5,16�
�0 1 /h 0.002 �4,5�
�as 1 /h 200 �4,17�
�as 1 /h 5 �18�
� cm2 /h 8.3	10−8 �19,20�

TABLE II. Parameters used for the simulations.

Name � �cm2 /h� �as �1 /h� �as �1 /h� QM QD Symbol

�A� 8.3	10−8 200 5 100 10 �

�B� 8.3	10−8 200 5 40 10 �

�C� 8.3	10−8 160 5 100 10 *
�D� 8.3	10−8 250 5 100 10 �

�E� 8.3	10−8 200 20 100 10 �

�F� 8.3	10−8 200 5 100 20 	

�G� 8.3	10−8 200 5 150 10 �

�H� 8.3	10−8 200 5 100 4 #

�I� 4.15	10−8 200 5 100 10 ˝

�J� 16.6	10−8 200 5 100 10 �

�K� 2.5	10−8 200 5 100 10 �
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interface and the distances of these nodal points to the center
of mass of the necrotic core. We can associate the viable rim
thickness � with the difference R−Rn.

If we want the cancer seed to thrive, it must be located in
a region with a high concentration of glucose, which acti-
vates the cell cycle and induces cell proliferation. Therefore,
when the tumor begins to grow all cancer cells are in a me-
dium with a sufficient amount of nutrients to complete the
cell cycle and there are no quiescent cells present. At these
early times the growth rate is proportional to the number of
tumor cells, which is itself proportional to R2 for two-
dimensional tumors. Therefore, the tumor mass m grows ex-
ponentially, because

dm

dt


dR2

dt
 R2 ⇒

dR

dt
 R . �6�

Subsequently, the supply of nutrients gradually decreases due
to the limited diffusivity of glucose, whose concentration
falls in the central region, whose cells become either quies-
cent or necrotic. Since the proliferating cells are concentrated

in the tumor periphery, the growth rate becomes proportional
to R for two-dimensional tumors and

dm

dt


dR2

dt
 R ⇒

dR

dt
= const. �7�

This argument has been used by Brú et al. �21�. It is easy to
see that the result dR /dt=const holds for 3D systems, too.
Experimental evidence showing that the mean tumor radius
grows linearly with time can be found in �17,21–23�.

In Fig. 1 we show the evolution of the rate of change of
the total number of cancer and dead cells, ��c+d� /�t, as a

function of R, where c=�i�c�i�� and d=�i�d�i��. The results
show good qualitative agreement with experimental data
�17,21–23� and the theoretical predictions above. In all cases,
there is a well-defined crossover between the exponential and
linear regimes. The slope of the linear region is larger in
those cases where the linear regime begins at larger sizes, the
exception being curve K, which corresponds to a very low
migration coefficient. The lowest curve corresponds to case
E: the high consumption rate leads to slow growth, and the
linear regime is reached for a small value of the radius. The
uppermost curve corresponds to case B: the low mitosis
threshold delays the crossover and leads to very fast growth.
In case J, shown in Fig. 1�b�, a second slope change takes
place around R=Rc=1050 
m. This case corresponds to the
highest value considered for the cell migration coefficient.
According to rule �V� above, cell migration is activated
when the free nutrient concentration near the cell is less than
PD, and therefore it is indirectly regulated by �as, �as, and
��. Our simulations indicate that an increase in � becomes
relevant for tumor sizes greater than a critical size defined by
the depth of the nutrient depletion hole around the tumor.
Above this critical size, cell migration is favored and cancer
cells can explore regions with higher concentration of nutri-
ents, leading to the observed increase in the growth rate for
large tumors.

In Fig. 2 we show Rn and � as functions of R. We can see
that the viable rim thickness remains approximately constant
for different sets of parameters. This property is known ex-

(a)

(b)

FIG. 1. Growth rates. �a� Simulation results for the cases de-
tailed in Table II, except for case J, which is shown in panel �b�.
Symbols are for simulation results and solid lines are best fits.

FIG. 2. Mean radius Rn �open symbols� of the necrotic region
and viable rim thickness �solid symbols�, as functions of the mean
tumor radius R. Simulation parameters are those in Table II.
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perimentally �24,25�. The experimental data for � reported
in these articles vary from 80 to 500 
m. Our results are
smaller than the experimental values due to the two-
dimensionality of the simulations. Although no qualitative
differences are expected between the two- and three-
dimensional results, the value of � is expected to be larger in
three-dimensional systems because of the larger number of
diffusion paths between any pair of node points. For clarity
we just show some illustrative runs; for all the other runs
considered, the results fall between the lowest and uppermost
curves. For the lowest curve the necrosis starts earlier than
for any other reported curve. Other simulations show that
moving the seed towards the feeding vessel increases the
number of cancer cells, but does not substantially alter the
tumor shape.

In this work we used a mathematical model to describe
cancer growth, finding that the hypotheses of the nutrient
competition model necessarily lead to an initially exponen-
tial growth followed by a linear regime. We also showed that
the viable outer layer of the tumor, formed by reproductive

and quiescent cells, has an approximately constant thickness.
Extensive simulations using realistic parameter values indi-
cate that the transition to latency is never achieved. Indeed,
we find that a phase transition occurs only if the diffusivity
of the critical nutrient is much smaller than that of glucose in
MTSs. Therefore, the observation that MTS diameters usu-
ally do not reach 2 mm indicates that an inhibitor �perhaps
accumulated wastes �5�� must be at work. The presence of
this inhibitor can explain the growth saturation usually de-
scribed by the Gompertz law. The absence of latency is con-
sistent with the intuitive idea that growth proceeds because
cells in the outer tumor rim are always exposed to high nu-
trient concentrations. A geometric property that remains to be
investigated is the roughness of the tumor surface, whose
width has been predicted to increase as �ln�t��1/2 �26�.
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